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Structurally intact tropical forests sequestered about half of the global terrestrial carbon 

uptake over the 1990s and early 2000s, removing about 15 per cent of anthropogenic carbon 

dioxide emissions1–3. Climate-driven vegetation models typically predict that this tropical forest 

‘carbon sink’ will continue for decades4,5. Here we assess trends in the carbon sink using 244 

structurally intact African tropical forests spanning 11 countries, compare them with 321 

published plots from Amazonia and investigate the underlying drivers of the trends. The 

carbon sink in live aboveground biomass in intact African tropical forests has been stable for 

the three decades to 2015, at 0.66 tonnes of carbon per hectare per year (95% confidence 

interval: 0.53-0.79), in contrast to the long-term decline in Amazonian forests6. Therefore the 

carbon sink responses of Earth’s two largest expanses of tropical forest have diverged. The 

difference is largely driven by carbon losses from tree mortality, with no detectable multi-

decadal trend in Africa and a long-term increase in Amazonia. Both continents show 

increasing tree growth, consistent with the expected net effect of rising atmospheric carbon 

dioxide and air temperature7–9. Despite the past stability of the African carbon sink, our data 

suggest a post-2010 increase in carbon losses, delayed compared to Amazonia, indicating 

asynchronous carbon sink saturation on the two continents. A statistical model including 

carbon dioxide, temperature, drought and forest dynamics accounts for the observed trends 

and indicates a long-term future decline in the African sink, while the Amazonian sink 

continues to weaken rapidly. Overall, the uptake of carbon into Earth’s intact tropical forests 

peaked in the 1990s. Given that the global terrestrial carbon sink is increasing in size, 

observations indicating greater recent carbon uptake into the Northern Hemisphere 

landmass10 reinforce our conclusion that the intact tropical forest carbon sink has already 

saturated. This tropical forest sink saturation and ongoing decline has consequences for 

policies intended to stabilize Earth’s climate. 

Tropical forests account for approximately one-third of Earth’s terrestrial gross primary productivity 

and one-half of Earth’s carbon stored in terrestrial vegetation11. Thus, small biome-wide changes in 

tree growth and mortality can have global impacts, either buffering or exacerbating the increase in 

atmospheric CO2. Models2,4,5,7,12, ground-based observations13–15, airborne atmospheric CO2 

measurements3,16, inferences from remotely sensed data17 and synthetic approaches3,8,18 each suggest 

that, after accounting for land-use change, the remaining structurally intact tropical forests (that is, 

those not affected by direct anthropogenic impacts such as logging) are increasing in carbon stocks. 
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This structurally intact tropical forest carbon sink is estimated at ~1.2 Pg C yr-1 over 1990–2007 

using scaled inventory plot measurements1. Yet, despite its relevance to policy, changes in this key 

carbon sink remain highly uncertain19,20. 

Globally, the terrestrial carbon sink is increasing2,7,8,21. Between 1990 and 2017 the land 

surface sequestered about 30% of all anthropogenic carbon dioxide emissions1,21. Rising CO2 

concentrations are thought to have boosted photosynthesis more than rising air temperatures have 

enhanced respiration, resulting in an increasing global terrestrial carbon sink2,4,7,8,21. Yet, for 

Amazonia, recent results from repeated censuses of intact forest inventory plots show a progressive 

two-decade decline in sink strength primarily due to an increase of carbon losses from tree 

mortality6. It is unclear if this simply reflects region-specific drought impacts22,23, or potentially 

chronic pan-tropical impacts of either heat-related tree mortality24,25, or internal forest dynamics 

resulting from past increases in carbon gains leaving the system26. A more recent deceleration of the 

rate of increase in carbon gains from tree growth is also contributing to the declining Amazon sink6. 

Again, it is not known if this is a result of either pan-tropical saturation of CO2 fertilization, or rising 

air temperatures, or is simply a regional drought impact. To address these uncertainties, we (1) 

analyse an unprecedented long-term inventory dataset from Africa, (2) pool the new African and 

existing Amazonian records to investigate the putative environmental drivers of changes in the 

tropical forest carbon sink, and (3) project its likely future evolution. 

We collected, compiled and analysed data from structurally intact old-growth forests from the 

African Tropical Rainforest Observation Network27 (217 plots) and other sources (27 plots) spanning 

the period 1968 to 2015 (Extended Data Fig. 1; Supplementary Table 1). In each plot (mean size, 1.1 

ha), all trees ³100 mm in stem diameter were identified, mapped and measured at least twice using 

standardized methods (135,625 trees monitored). Live biomass carbon stocks were estimated for 

each census date, with carbon gains and losses calculated for each interval (Extended Data Fig. 2). 

Continental carbon sink trends 
We detect no long-term trend in the per unit area African tropical forest carbon sink over three 

decades to 2015 (Fig. 1, Table 1). The aboveground live biomass sink averaged 0.66 megagrams of 

carbon per hectare per year (0.66 Mg C ha-1 yr-1 with 95% confidence interval of 0.53–0.79 and 

n = 244) and was significantly greater than zero for every year since 1990 (Fig. 1; P<0.001 for each 

time period in Table 1; two-tailed t-test). While the magnitude of the sink is very similar to past 

reports (0.63 Mg C ha-1 yr-1)13, this first estimate of the temporal trend in Africa contrasts with the 

declining Amazonian trend6 (Fig. 1). A linear mixed effect model shows a significant difference in 
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the slopes of the sink trends for the two continents over the common time window (pooled data from 

both continents, common time window, 1983–mid-2011; P = 0.017). Therefore, the per unit area 

sink strength of the two largest expanses of tropical forest on Earth diverged in the 1990s and 2000s. 

The proximal cause of the divergent sink patterns is a significant increase in carbon losses 

(from tree mortality, that is, the loss of carbon from the live biomass pool) in Amazonian forests, 

with no detectable trend over three decades in African forests (Fig. 1). A linear mixed effects model 

using pooled data shows a significant difference in slopes of carbon losses between the two 

continents over the common 1983 to mid-2011 time window (P = 0.027). Long-term trends in carbon 

gains (from tree growth and newly recruited trees) show significant increases on both continents 

(Fig. 1), and we could detect no difference in slopes between the continents (P = 0.348; carbon gains 

from tree growth alone also show no continental difference in long-term trends, P = 0.322). 

However, an assessment of how underlying environmental drivers affect carbon gains and losses is 

needed to understand the ultimate causes of the divergent sink patterns. 

Understanding the carbon sink trends 
We first investigate those environmental drivers exhibiting long-term change that affect 

photosynthesis and respiration in theory-driven models: atmospheric CO2 concentration, surface air 

temperature and water availability. A linear mixed effects model of carbon gains, with censuses 

nested within plots, and pooling the new African and published Amazonian data, shows a significant 

positive relationship with CO2, and significant negative relationships with mean annual temperature 

(MAT) and drought (measured as the maximum climatological water deficit, MCWD14; Fig. 2; 

Extended Data Table 1). These results are consistent with a positive CO2 fertilization effect, and 

negative effects of higher temperatures and drought on tree growth, consistent with temperature-

dependent increases in autotrophic respiration, and temperature- and drought-dependent reductions 

in carbon assimilation. By contrast, the equivalent model for carbon losses (that is, tree mortality) 

shows no significant relationships with CO2, MAT or MCWD (Fig. 2; Extended Data Table 1). 

We further investigate the responses of carbon gains and losses (for which the above analysis 

has no explanatory power) by expanding our potential explanatory variables to include five more. 

These are the changes in environmental conditions (CO2-change, MAT-change, MCWD-change, see 

Extended Data Fig. 3 for calculation details) and two attributes of forests that may influence their 

response to the same environmental changes: the plot mean wood density (which in old-growth 

forests correlates with below-ground resource availability28,29) and the plot carbon residence time 
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(CRT, which measures how long fixed carbon remains in the system and hence reflects when past 

increases in carbon gains leave the system as elevated carbon losses30). 

The minimum adequate carbon gain model using our expanded explanatory variables (best-

ranked model using multimodel inference) has a positive relationship with CO2-change, and negative 

relationships with MAT, MAT-change, MCWD and wood density (Table 2; model-average results 

are similar, see Methods and Supplementary Tables 2–4). The retention of both MAT and MAT-

change suggests that higher temperatures correspond to lower tree growth, and that trees only 

partially acclimate to recently rising temperatures, which further reduces growth, consistent with 

warming experiments31 and observations9. The inclusion of higher wood density and its relationship 

to lower carbon gains (Extended Data Fig. 4), alongside no temporal trends in wood density 

(Extended Data Fig. 5), suggests that old-growth forests with denser-wooded tree communities 

typically have fewer available below-ground resources, or such patterns may also emerge from 

disturbance regimes lacking large-scale exogenous events, consistent with prior studies26,28,32. 

The minimum adequate carbon gain model using our expanded explanatory variables also 

highlights continental differences. Between 2000 and 2015 African forest carbon gains increased by 

3.1% compared with a 0.1% decline in Amazonia over the same interval (Table 2). In Africa, from 

2000 to 2015, the carbon gain increase was composed of a 3.7% increase from CO2-change, partially 

offset by increasing droughts depleting gains by 0.5%, and only a slight decline in gains of 0.1% 

resulting from temperature increases (Table 2), because the rate of temperature change (MAT-

change) decelerated over this time window (Extended Data Fig. 5). For Amazonia, the same 3.7% 

carbon gain increase due to CO2-change was seen. Meanwhile, increasing droughts—and the greater 

sensitivity to drought of Amazonian forests—reduced carbon gains by 2.7% (five times the impact in 

Africa), and temperature increases at the same rate as in the past (that is, MAT-change is zero) 

further reduced gains by 1.1% (ten times the impact in Africa), leaving a net change in gains slightly 

below zero (Table 2). Therefore, the recent stalling of carbon gain increases in Amazonia6 is a 

response to drought and temperature and not due to an unexpected saturation of CO2 fertilization. 

Overall, the larger modelled increase in carbon gains in Africa relative to Amazonia appear to be 

driven by slower warming, fewer or less extreme droughts, lower forest sensitivity to droughts, and 

overall lower temperatures (African forests are on average ~1.1 °C cooler than Amazonian forests, 

because they typically grow at ~200-m-higher elevations). Other continental differences may also be 

influencing the results, including higher nitrogen deposition in African tropical forests due to the 

seasonal burning of nearby savannas33 and biogeographic history resulting in differing contemporary 

species pools and resulting functional attributes34,35. 
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The minimum adequate carbon loss model using our expanded explanatory variables shows 

higher losses with CO2-change and MAT-change and lower losses with MCWD and the CRT (Table 

2). Thus, changes in carbon losses appear to be largely a function of carbon gains. First, the greater 

losses in forests with shorter CRT conform to a ‘high-gain, high-loss’ forest dynamics pattern26. 

Second, wetter plots have a longer growing season and thus they have higher gains and 

correspondingly higher losses, explaining the negative relationship with MCWD. Third, as 

increasing CO2 levels result in additional carbon gains, after some time these additional past gains 

leave the system, resulting in greater carbon losses, which explains the positive relationship with 

CO2-change. Finally, in addition to these relationships with carbon gains, the inclusion of MAT-

change (P < 0.001) indicates tree mortality induced by heat or vapour pressure deficit24.  Overall, our 

results imply that chronic long-term environmental change factors, temperature and CO2, rather than 

simply the direct effects of drought, underlie longer-term trends in tropical forest tree mortality, 

although other changes such as rising liana infestation rates seen in Amazonia36,37 cannot be 

excluded. 

The minimum adequate carbon loss model using our expanded explanatory variables 

replicates the continental trends (Fig. 3). The overall lower loss rates in Africa reflect their longer 

CRT (69 years, 95% CI, 66–72), compared with Amazonian forests (56 years, 95% CI, 54–59) while 

over the 2000–2015 window the much smaller increase in loss rates in Africa compared to Amazonia 

results from a slower increase in warming and a stable CRT in Africa compared to continued 

warming at previous rates and a shortening CRT in Amazonian forests (Extended Data Fig. 5). 

Furthermore, given that losses appear to lag behind gains, they should relate to the long-term CRT of 

plots. This is what we find: the longer the CRT the smaller the increase in carbon losses, with no 

increase in losses for plots with CRT ³ 77 years (Extended Data Fig. 6). Consequently, owing to the 

typically longer residence times of African forests, increasing losses in Africa ought to appear 10–15 

years after the increase in Amazon losses began (around 1995). Strikingly, in Africa the most 

intensely monitored plots suggest that losses began increasing from about 2010 (Extended Data Fig. 

7), and plots with shorter CRT are driving the increase (Extended Data Fig. 8). Thus, a mortality-

dominated decline of the African carbon sink appears to have begun very recently. 

Future of the tropical forest carbon sink 
Our carbon gain and loss models (Table 2) can be used to make a tentative estimate of the future size 

of the per unit area intact forest carbon sink (Fig. 3). Extrapolations of the changes in the predictor 

variables from 1983–2015 forward to 2040 (Extended Data Fig. 5) show declines in the sink on both 

continents (Fig. 3). By 2030 the carbon sink in aboveground live biomass in intact African tropical 



[Type here] 
 

Page 10 of 43 

forest is predicted to decline by 14% from the measured 2010–15 mean to 0.57 Mg C ha-1 yr-1 (2s 

range, 0.16–0.96; Fig. 3). The Amazon sink continues to decline, reaching zero in 2035 (2s range, 

2011–2089; Fig. 3). Our estimated sink strength on both continents in the 2020s and 2030s is 

sensitive to future CO2 emissions pathways (CO2-change)38, resulting temperature increase (MAT, 

MAT-change) and hydrological changes (MCWD), plus changes in forest dynamics (CRT), but the 

sink is always lower than levels seen in the 2000s (see Methods and Supplementary Table 5). 

Therefore, the carbon sink strength of the world’s two most extensive tropical forests have now 

saturated, albeit asynchronously. 

Scaling results to the pan-tropics 
Scaling our estimated mean sink strength by forest area for each continent signifies that Earth 

recently passed the point of peak carbon sequestration into intact tropical forests (Table 1). The 

continental sink in Amazonia peaked in the 1990s, followed by a decline, driven by sink strength 

peaking in the 1990s and a continued decline in forest area (Table 1). In Africa the per unit area sink 

strength peaked later in the 2000–2010 period, but the continental African sink peaked in the 1990s, 

owing to the decline in forest area in the 2000s outpacing the small per unit area increase in sink 

strength. Including the modest uptake in the much smaller area of intact Asian tropical forest 

indicates that total pan-tropical carbon uptake peaked in the 1990s (Table 1). From the peak pan-

tropical intact forest uptake of 1.26 Pg C yr-1 in the 1990s, we project a continued decline reaching 

just 0.29 Pg C yr-1 in the 2030s (multi-decade decline of ~0.24 Pg C yr-1 per decade), driven by (1) 

reduced mean pan-tropical sink strength decline of 0.1 Mg C ha-1 yr-1 per decade and (2) ongoing 

forest area losses of ~13.5 million ha yr-1 (see Extended Data Table 2 for forest area details). 

Critically, climate-driven vegetation model simulations have not predicted that the peak net carbon 

uptake into intact tropical forests has already been passed2,4,5. 

Discussion 
Our method of scaling to arrive at a pan-tropical sink estimate—in common with other studies using 

similar datasets1,6,13—is limited. Yet, pervasive net carbon uptake is expected given that we find a 

strong and ongoing CO2 fertilization effect. Using our CO2 response in Table 2, we find an increase 

in aboveground carbon stocks of 10.8 ± 3.7 Mg C ha-1 per 100 ppm CO2, equivalent to 6.5 ± 2.2% 

(±SE, using an area-weighted pan-tropical mean aboveground C stock of 165 Mg C ha-1). This is 

comparable to the 5.0 ± 1.2% increase in tropical forest C stocks per 100 ppm CO2 derived from a 

recent synthesis of CO2 fertilization experiments, despite a lack of data from mature tropical 

forests39. Our result is within the range of climate-driven vegetation models2,7, although it is greater 
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than results from a number of recently published models that include potential nutrient constraints, 

reported as 5.9 ± 4.7 Mg C ha-1 per 100 ppm CO2 (ref. 40). We find that the CO2 fertilization uptake 

is currently only partially offset by the negative impacts of similarly widespread rising air 

temperatures (-2.0 ± 0.4 Mg C ha-1°C-1, from Table 2), consistent with models7, limited 

experiments31 and independent observations9, plus negative responses to drought41,42. Long-term and 

extensive increases in satellite-derived greenness in tropical regions not experiencing major changes 

in land-use management17,43, particularly in central Africa in the past decade44, indicate increases in 

tropical forest net primary productivity, providing further evidence that the sink is a widespread 

phenomenon44. 

Nonetheless, our analyses show that this pervasive tropical forest sink in live biomass is in 

long-term decline, having peaked first in Amazonia, and more recently in African forests, explaining 

the prior Africa–Amazon carbon sink divergence as part of a longer-term pattern of asynchronous 

saturation and decline. From an atmospheric perspective, the full impacts of the contribution to the 

saturation of the sink from slowing carbon gains are experienced immediately, but the contribution 

from rising carbon losses is delayed because dead trees do not decompose instantaneously. 

Decomposition of this dead tree mass is about half complete in 4 years, and about 85% complete in 

10 years, so rising carbon losses result in delayed carbon additions to the atmosphere45. Hence, from 

an atmospheric perspective, the intact tropical forest biomass carbon sink probably peaked a few 

years later than our plot data indicate and the full impacts are not yet realized. The pan-tropical 

carbon sink in live biomass declined by 0.27 Pg C yr-1 between the 1990s and 2000s (Table 1), but 

accounting for dead wood decomposition45 shows a smaller 0.17 Pg C yr-1 reduction from an 

atmospheric perspective (see Methods). 

Given that the global terrestrial carbon sink is increasing, a weakening intact tropical forest 

sink implies that the extra-tropical carbon sink has increased over the past two decades. Independent 

observations of inter-hemispheric atmospheric CO2 concentration indicates that carbon uptake into 

the Northern Hemisphere landmass has increased at a greater rate than the global terrestrial carbon 

sink since the 1990s, with a further disproportionate increase in the 2000s10. The inter-hemispheric 

analysis suggests a weakening of the tropical forest sink by ~0.2 Pg C yr-1 between the 1990s and 

2000s10, which is similar to the 0.17 Pg C yr-1 weakening over the same time period that we find. 

This reinforces our conclusion that the intact tropical forest carbon sink has already saturated. 

In summary, our results indicate that although intact tropical forests remain major stores of 

carbon and are key centres of biodiversity11, their ability to sequester additional carbon is waning. In 
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the 1990s intact forests removed 17% of anthropogenic CO2 emissions. This has declined to 6% in 

the 2010s, because the pan-tropical weighted average per unit area sink strength declined by 33%, 

forest area decreased by 19% and CO2 emissions increased by 46%. Although tropical forests are 

more immediately threatened by deforestation46 and degradation47, and the future carbon balance will 

also depend on secondary forest dynamics48 and forest restoration plans49, our analyses show that 

they are also affected by atmospheric chemistry and climatic changes. Given that the intact tropical 

forest carbon sink is set to end sooner than even the most pessimistic climate-driven vegetation 

models predict4,5, our analyses suggest that climate change impacts in the tropics may become more 

severe than predicted. Furthermore, the carbon balance of intact tropical forests will only stabilize 

once CO2 concentrations and the climate stabilizes. 

Continued on-the-ground monitoring of the world’s remaining intact tropical forests will be 

required to test our prediction that the intact tropical forest carbon sink will continue to decline. Such 

direct ground-based measurements also provide constraint on estimating the size, location and 

climate sensitivity of the terrestrial carbon sink. In addition, our conclusion that tree mortality and 

internal forest dynamics are important controls on the future of the tropical forest carbon sink may 

assist in improving the vegetation components of Earth System Models50 and contribute to reducing 

terrestrial carbon cycle feedback uncertainty19,20. Our findings also have policy implications. At the 

individual country level, given that intact tropical forests are a carbon sink, but that it’s magnitude 

changing, national greenhouse gas reporting will require careful forest monitoring. At the 

international level, given that tropical forests are likely to sequester less carbon in the future than 

Earth System Models predict, an earlier date by which to reach net zero anthropogenic greenhouse 

gas emissions will be required to meet any given commitment to limit the global heating of Earth. 

Online content Any methods, additional references, Nature Research reporting summaries, source data, extended data, 

supplementary information, acknowledgements, peer review information; details of author contributions and competing 

interests; and statements of data and code availability are available at [Article DOI]. 
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Table 1 Carbon sink in intact forests in Africa, Amazonia and the pan-tropics  

Period 

Number of 
plots 

Per unit area aboveground live biomass C sink 
(Mg C ha-1 yr-1) 

Total C sinka 
(Pg C yr-1) 

Afric
a 

Amaz
on Africa Amazon Pan-tropicsb Africa Amazon Pan-tropicsb 

1980-
1990 45 73 

0.33 (0.06–
0.63) 

0.35 (0.06–
0.59) 

0.35 (0.07–
0.62) 

0.28 (0.05–
0.53) 

0.49 (0.08–
0.82) 

0.87 (0.16–
1.52) 

1990–
2000 96 172 

0.67 (0.43–
0.89) 

0.53 (0.42–
0.65) 

0.57 (0.39–
0.74) 

0.50 (0.32–
0.66) 

0.68 (0.54–
0.83) 

1.26 (0.88–
1.63) 

2000–
2010 194 291 

0.70 (0.55–
0.84) 

0.38 (0.26–
0.48) 

0.50 (0.35–
0.64) 

0.46 (0.37–
0.56) 

0.45 (0.31–
0.57) 

0.99 (0.70–
1.25) 

2010–
2015 184 172 

0.66 (0.40–
0.91) 

0.24 (0.00–
0.47) 

0.40 (0.15–
0.65) 

0.40 (0.24–
0.56) 

0.27 (0.00–
0.52) 

0.73 (0.25–
1.18) 

2010–
2020c – – 

0.63 (0.36–
0.89) 

0.23 (–0.05–
0.50) 

0.38 (0.11–
0.65) 

0.37 (0.21–
0.53) 

0.25 (–0.05–
0.54) 

0.68 (0.17–
1.16) 

2020–
2030c – – 

0.59 (0.24–
0.93) 

0.12 (–0.29–
0.51) 

0.30 (–0.08–
0.67) 

0.31 (0.13–
0.49) 

0.12 (–0.29–
0.52) 

0.47 (–0.15–
1.07) 

2030–
2040c – – 

0.55 (0.08–
0.99) 

0.00 (–0.54–
0.49) 

0.21 (–0.29–
0.67) 

0.26 (0.04–
0.47) 

0.00 (–0.50–
0.46) 

0.29 (–0.46–
0.97) 

This table covers 1980–2015 and predictions to 2040. Mean values are in boldface, future predictions in 
italics, uncertainties in parentheses 95% bootstrapped confidence intervals for 1980–2015, and 2s for the 
predictions (2010–2040). 
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aThe total continental C sink is the per unit area aboveground C sink multiplied by intact forest area for 1990–
2010 (from ref.1; see Extended Data Table 2) and continent-specific extrapolations to 2040. Total continental 
C sink includes continent-specific estimates of trees <100 mm DBH, lianas and roots (see Methods). 
bPan-tropical aboveground live biomass C sink is the area-weighted mean of African, Amazonian and 
Southeast Asian sink values. Southeast Asian values were from published per unit area carbon sink data15 
(n = 49 plots) for 1990–2015, with 1980–1990 assumed to be the same as 1990–2000 owing to very low 
sample sizes. The pan-tropical total C sink is the sum of African, Amazonian and Southeast Asian total 
continental carbon sink values. The continental sink in Southeast Asia is a modest and declining contribution 
to the pan-tropical sink, owing to the very small area of intact forest remaining, at 0.11 Pg C yr-1, 
0.08 Pg C yr-1, 0.07 Pg C yr-1 and 0.06 Pg C yr-1 in the 1980s, 1990s, 2000s and 2010s, respectively; hence 
uncertainty in the Southeast Asian sink cannot reverse the pan-tropical declining sink trend. 
cPer unit area total C sink for 2010–2020, 2020–2030 and 2030–2040 was predicted using parameters from 
Table 2, except for the 2010–2020 sink in Africa, which is the mean of the measured sink from 2010–2015 
and the modelled sink from 2015–2020. For the Asian sink we assumed the same parameters as for Africa, 
because Asian forest median CRT is 61 years, close to the African median of 63 years. 

Table 2 Minimum adequate models to predict carbon gains and losses in African and Amazonian 
tropical forests  

Carbon gains (Mg C ha-1 yr-1) 
Predictor variable 

 
Parameter value Standard 

error 
t value P value 2000–2015 

change in gains 
(%)a 

Intercept  5.255 |  5.395 0.603 | 0.614 8.7 | 8.8 <0.001 - 
CO2-change (ppm yr-1)b  0.238 0.096 2.5 0.013 3.69% | 3.71% 
MAT (°C)  -0.083 0.025 -3.3 0.001 -0.67% | -1.07% 
MAT-change (°C yr-1)c  -1.243 0.233 -5.3 <0.001 0.58% | 0.00%d 
MCWD (mm × 1,000)  -0.405 | -1.391 0.381 | 0.24 -1.1 | -5.8 0.289 | <0.001 -0.52% | -2.73% 
Wood density (g cm-3)  -1.295 0.530 -2.4 0.015 0.05% | 0.00% 

Carbon losses (Mg C ha-1 yr-1)e 
Predictor variable 

 
Parameter value Standard 

error 
t value P value 2000–2015 

change in losses 
(%)a 

(Intercept)  1.216 0.086 14.1 <0.001 - 
CO2-change (ppm yr-1)b  0.130 0.059 2.2 0.026 11.38% | 14.81% 
MAT-change (°C yr-1)  0.766 0.162 4.7 <0.001 -1.56% | 0.00% 
MCWD (mm × 10,000)c  -0.232 0.107 -2.2 0.030 -1.21% | -2.42% 
CRT (years)  -0.003 0.001 -6.1 <0.001 -0.57% | 1.39% 
These are the best-ranked gains and loss models. Where continental values differ, those for Africa are 
reported first, followed by Amazonian values (separated by a vertical line). 
aThe 2000–2015 change in gains/losses for each predictor variable was estimated allowing only the focal 
predictor to vary; this change was then expressed as a percentage of the annual gains/losses in the year 
2000, allowing all predictors to vary. 
bChange over the past 56 years. 
cChange over the past 5 years. 
dA positive value for Africa indicates that MAT increased more slowly over 2000–2015 compared to the mean 
increase over 1983–2015, therefore contributing to an increase in gains; a zero value for Amazonia indicates 
that the rate of MAT increase was the same over 2000–2015 as the mean increase over 1983–2015. 
eCarbon loss values were normalized via power-law transformation, with power parameter l = 0.361.  

Fig. 1 Long-term carbon dynamics of structurally intact tropical forests in Africa and 

Amazonia. a–c, Trends in net aboveground live biomass carbon sink (a), carbon gains to the system 

from wood production (b), and carbon losses from the system from tree mortality (c), measured in 

244 African inventory plots (blue lines) and contrasting published6 Amazonian inventory data 
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(brown lines; 321 plots). Shading corresponds to the 95% CI, with darker shading indicating a 

greater number of plots monitored in that year (the lightest shading indicates the minimum 25 plots 

monitored). The CI for the Amazonian dataset is omitted for clarity, but can be seen in Fig. 3. Slopes 

and P values are from linear mixed effects models (see Methods). 

Fig. 2 Potential environmental drivers of carbon gains and losses in structurally intact old-

growth African and Amazonian tropical forests. Aboveground carbon gains, from woody 

production (a–c), and aboveground carbon losses, from tree mortality (d–f), are presented as time-

weighted mean values for each plot, that is, each census within a plot is weighted by its length, 

against the corresponding values of atmospheric carbon dioxide concentration (CO2), annual MAT 

and drought (MCWD), for African (blue) and Amazonian (brown) inventory plots. Each data point 

therefore represents an inventory plot, for visual clarity, and the shading represents the total 

monitoring length, with empty circles corresponding to plots monitored for £5 years and solid circles 

for plots monitored for >20 years. Solid lines show significant trends and dashed lines show non-

significant trends calculated using linear mixed effect models with census intervals (n = 1,566) 

nested within plots (n = 565), using an empirically derived weighting based on interval length and 

plot area, on the untransformed pooled Africa and Amazon dataset (see Methods). Slopes and P 

values are from the same linear mixed effects models. Carbon loss data and models are presented 

untransformed for comparison with carbon gains, but transformation is needed to fit normality 

assumptions; linear mixed effects models on transformed carbon loss data does not change the 

significance of the slopes, nor does including all three parameters and transformed data in a model 

(see Extended Data Table 1). 

Fig. 3 Modelled past and future carbon dynamics of structurally intact tropical forests in 

Africa and Amazonia. a–f, Predictions of net aboveground live biomass carbon sink (a, d), carbon 

gains (b, e), and carbon losses (c, f), for African (left panels) and Amazonian (right panels) plot 

inventory networks, based on CO2-change, MAT, MAT-change, drought (MCWD), plot wood 

density, and plot CRT, using observations in Africa until 2014 and Amazonia until mid-2011, and 

extrapolations of prior trends to 2040. Model predictions are in blue (Africa) and brown (Amazon), 

with solid lines spanning the window when ³75% of plots were monitored to show model 

consistency with the observed trends, and shading showing upper and lower confidence intervals 

accounting for uncertainties in the model (both fixed and random effects) and uncertainties in the 

predictor variables. Light-grey lines and grey shading are the mean and 95% CI of the observations 

from the African and Amazonian plot networks. 
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METHODS 

Plot selection 

Closed canopy (that is, not woody savanna) old-growth mixed-age forest inventory plots were 

selected using commonly used criteria6,13,27: free of fire and industrial logging; all trees with diameter 

at reference height ³100 mm measured at least twice; area ³0.2 ha; altitude <1,500 m above sea 

level; MAT ³ 20.0 °C51; annual precipitation ³1,000 mm51; located ³50 m from anthropogenic forest 

edges. Of the 244 plots included in the study, 217 contribute to the African Tropical Rainforest 

Observatory Network (AfriTRON; www.afritron.org), with data curated at www.ForestPlots.net52,53. 

These include plots from Sierra Leone, Liberia, Ghana, Nigeria, Cameroon, Gabon, Republic of 

Congo, Democratic Republic of Congo, Uganda and Tanzania52,53 (Extended Data Fig. 1). Fifteen 

plots are part of the TEAM network, from Cameroon, Republic of Congo, Tanzania and Uganda54–57. 

Nine plots contribute to the ForestGEO network, from Cameroon and Democratic Republic of 

Congo58 (9 plots from Democratic Republic of Congo, with codes SNG, contribute to both 

AfriTRON and ForestGEO networks, included above in the AfriTRON total). Finally, three plots 

from Central African Republic are part of the CIRAD network59,60. The large majority of plots are 

sited in terra firme (solid ground) forests and have mixed species composition, although four are in 

seasonally flooded forest and 14 plots are in Gilbertiodendron dewevrei monodominant forest, a 

locally common forest type in Africa (Supplementary Table 1). The 244 plots have a mean size of 

1.1 ha (median, 1 ha), with a total plot area of 277.9 ha. The dataset comprises 391,968 diameter 

measurements on 135,625 stems, of which 89.9% were identified to species, 97.5% to genus and 

97.8% to family. Mean total monitoring period is 11.8 years, mean census length 5.7 years, with a 

total of 3,214 ha years of monitoring. The 321 Amazon plots are published and were selected using 

the same criteria6, except in the African selection criteria we specified a minimum anthropogenic 

edge distance and added a minimum temperature threshold. 

Plot inventory and tree biomass carbon estimation 

Tree-level aboveground biomass carbon is estimated using an allometric equation with parameters 

for tree diameter, tree height and wood mass density61. The calculation of each is discussed in turn. 

All calculations were performed using the R statistical platform, version 3.2.1 (ref. 62) using the 

BiomasaFP R package, version 0.2.1 (ref. 63). 

Tree diameter. In all plots, all woody stems with ³100 mm diameter at 1.3 m from the base 

of the stem (‘diameter at breast height’, DBH), or 0.5 m above deformities or buttresses, were 

measured, mapped and identified using standard forest inventory methods64,65. The height of the 

point of measurement (POM) was marked on the trees and recorded, so that the same POM is used at 
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the subsequent forest census. For stems developing deformities or buttresses over time that could 

potentially disturb the initial POM, the POM was raised approximately 500 mm above the deformity. 

Estimates of the diameter growth of trees with changed POM used the ratio of new to old POMs, to 

create a single trajectory of growth from the series of diameters at two POM heights6,13,65. We used 

standardized protocols to assess typographical errors and potentially erroneous diameter values (for 

example, trees shrinking by >5 mm), missing values, failures to find the original POM, and other 

issues. Where necessary we estimated the likely value via interpolation or extrapolation from other 

measurements of that tree, or when this was not possible we used the median growth rate of trees in 

the same plot, census and size-class, defined as DBH = 100–199 mm, or 200–399 mm or >400 mm65. 

We interpolated measurements for 1.3% of diameters, extrapolated 0.9%, and used median growth 

rates for 1.5%. 

Tree height. Height of individuals from ground to the top leaf, hereafter Ht, was measured in 

204 plots, using a laser hypsometer (Nikon forestry Pro) from directly below the crown (most plots), 

a laser or ultrasonic distance device with an electronic tilt sensor, a manual clinometer, or by direct 

measurement, that is, climbing the tree. Only trees where the top was visible were selected66. In most 

plots, tree selection was similar: the 10 largest trees were measured, together with 10 randomly 

selected trees per diameter from five classes: 100–199 mm, 200–299 mm, 300–399 mm, 400–499 

mm, and 500+ mm trees, following standard protocols66. We measured the actual height of 24,270 

individual trees from 204 plots. We used these data and the local.heights function in R package 

BiomasaFP63 to fit 3-parameter Weibull relationships: 

Ht = a × (1 - e(-b × (DBH/10)c))    (1) 

We chose the Weibull model because it is known to be robust when a large number of 

measurements are available66,67. We parameterized separate Ht-DBH relationships for four different 

combinations of edaphic forest type and biogeographical region: (1) terra firme forest in West 

Africa, (2) terra firme forest in Lower Guinea and the Western Congo Basin, (3) terra firme forest in 

Eastern Congo Basin and East Africa, (4) seasonally flooded forest from Lower Guinea and the 

Western Congo Basin (there were no seasonally flooded forest plots in the other biogeographical 

regions). The parameters are: (1) terra firme forest in West Africa, a = 56.0; b = 0.0401; c = 0.744; 

(2) terra firme forest in Lower Guinea and the Western Congo Basin, a = 47.6; b = 0.0536; 

c = 0.755; (3) terra firme forest in the Eastern Congo Basin and East Africa, a = 50.8; b = 0.0499; 

c = 0.706; and finally (4) seasonally flooded forest from Lower Guinea and the Western Congo 

Basin, a = 38.2; b = 0.0605; c = 0.760. For each of these combinations of forest type and bioregion, 

the local.heights function combines all height measurements from all plots belonging to that forest 
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type/bioregion and fits the Weibull model parameters using nonlinear least squares (nls function in R 

with default settings), with starting values of a = 25, b = 0.05 and c = 0.7 chosen because they led to 

regular model convergence. We fitted these models either treating each observation equally or with 

case weights proportional to each tree’s basal area. These weights give more importance to large 

trees during model fitting. We selected the best fitting of these models, determining this to be the 

model that minimized prediction error of stand biomass when calculated with estimated heights or 

observed heights. The parameters were used to estimate Ht from DBH for all tree DBH 

measurements for input into the allometric equation. Mean measured individual total tree height is 

20.5 m; the height range is 1.5 to 72.5 m. The root mean squared error (RMSE) between the full 

dataset of measured heights and the predicted heights is 5.7 m, which is 8.0% of the total range. 

Furthermore, RMSE is 5.3 m in terra firme forest in West Africa (7.5% of the range; n = 9,771 

trees); RMSE is 6.4 m in terra firme forest in Lower Guinea and the Western Congo Basin (8.7% of 

the range; n = 10,838 trees); RMSE is 4.8 m in terra firme forest in the Eastern Congo Basin and 

East Africa (8.8% of the range; n = 3,269 trees); and RMSE is 4.1 m in seasonally flooded forest 

from Lower Guinea and the Western Congo Basin (12.5% of the range; n = 392 trees). 

Wood density. Dry wood density (r) measurements were compiled for 730 African species 

from published sources and stored in www.ForestPlots.net; most were sourced from the Global 

Wood Density Database on the Dryad digital repository (www.datadryad.org)68,69. Each individual in 

the tree inventory database was matched to a species-specific mean wood density value. Species in 

both the tree inventory and wood density databases were standardized for orthography and 

synonymy using the African Plants Database (www.ville-ge.ch/cjb/bd/africa/) to maximize 

matches13. For incompletely identified individuals or for individuals belonging to species not in the r 

database, we used the mean r value for the next-highest known taxonomic category (genus or 

family, as appropriate). For unidentified individuals, we used the mean wood density value of all 

individual trees in the plot13,52. 

Allometric equation. For each tree we used a published allometric equation61 to estimate 

aboveground biomass. We then converted this to carbon, assuming that aboveground carbon (AGC, 

in Mg C ha-1) is 45.6% of aboveground biomass70. Thus: 

AGC = 0.456 × (0.0673 × (r × (DBH/10)2 × Ht)0.976)⁄1,000   (2) 

with DBH in millimetres, dry wood density r in grams per cubic centimetre, and total tree 

height Ht in metres (ref. 61). Aboveground carbon in living biomass for each plot at each census date 

was estimated as the sum of the AGC of each living stem, divided by plot area (in hectares). 
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Carbon gain and carbon loss estimation 

Net carbon sink (in Mg C ha-1 yr-1) is estimated as carbon gains minus carbon losses. Calculation 

details are explained below. Carbon gains (in Mg C ha-1 yr-1) are the sum of the aboveground live 

biomass carbon additions from the growth of surviving stems and the addition of newly recruited 

stems (recruits are stems reaching a DBH≥100 mm during a given census interval), divided by the 

census length (in years) and plot area (in hectares). For each stem that survived a census interval, 

carbon additions from its growth (Mg C ha-1 yr-1) were calculated as the difference between its AGC 

at the end census of the interval and its AGC at the beginning census of the interval. For each stem 

that recruited during the census interval (that is, reaching DBH ³ 100 mm), carbon additions were 

calculated in the same way, assuming DBH = 0 mm at the start of the interval65.  

Carbon losses (in Mg C ha-1 yr-1) are estimated as the sum of aboveground biomass carbon 

from all stems that died during a census interval, divided by the census length (in years) and plot area 

(in hectares). Both carbon gains and carbon losses are calculated using standard methods6, including 

a census interval bias correction, using the SummaryAGWP function of the R package 

BiomasaFP63,64,68. 

As carbon gains are affected by a census interval bias, with the underestimate increasing with 

census length, we corrected this bias by accounting for (1) the carbon additions from trees that grew 

before they died within an interval (unobserved growth) and (2) the carbon additions from trees that 

recruited and then died within the same interval (unobserved recruitment)65,71. 

Component (1), the unobserved growth of a stem that died during a census interval, is 

estimated as the difference between AGC at death and AGC at the start of the census. These are 

calculated using equation (2), from DBHdeath and DBHstart, respectively. The latter is part of the data, 

the first can be estimated as: DBHdeath = DBHstart × G × Ymean, where G is the plot-level median 

diameter growth rate (in mm yr-1) of the size class the tree was in at the start of the census interval 

(size classes are defined as D < 200 mm, 400 mm > D ³ 200 mm and D ³ 400 mm) and Ymean is the 

mean number of years that trees survived in the census interval before dying. Ymean is calculated from 

the number of trees that are expected to have died in each year of the census interval, which is 

derived from the plot-level per capita mortality rate (ma; as percentage of dead trees per year) 

calculated following equation (5) in ref. 71. 

Component (2), the growth of recruits that were not observed because they died during the 

census interval, is estimated by calculating the number of unobserved recruits and diameter at death 

for each unobserved recruit. The number of unobserved recruits (stems ha-1 yr-1) is estimated as: 
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Nu.r = Ra – Psurv × Ra, where Ra (number of recruited stems ha-1 yr-1) is the per-area annual 

recruitment calculated following equation (11) in ref. 71 and Psurv is the probability of each recruit 

surviving until the next census: Psurv = (1 - ma)T, where T is the number of years remaining in the 

census interval. Summing Nu.r for each year in a census interval gives the total number of unobserved 

recruits in that census interval. We then estimate diameter at death for each unobserved recruit, 

which is given in millimetres by DBHdeath,u.r = 100 + (Gs × Ymean-rec), where Gs is the plot-level 

median diameter growth rate (in mm yr-1) of the smallest size class (that is, D < 200 mm) and Ymean-

rec is the mean lifespan of unobserved recruits calculated as the mean lifespan of recruits in a given 

year, weighted by Nu.r. The mean lifespan of recruits in a given year is calculated from the number of 

recruits that died in that year, which is derived from the plot-level per capita mortality rate ma. 

Growth of each unobserved recruit (mm yr-1) is then calculated as DBHdeath,u.r divided by Ymean-rec. 

The census interval bias correction (components (1) and (2) combined) typically add <3% to 

plot-level carbon gains. Carbon losses are affected by the same census interval bias, so we corrected 

this bias by accounting for (1) the additional carbon losses from the trees that were recruited and then 

died within the same interval, and (2) the additional carbon losses resulting from the growth of the 

trees that died in the interval6,15,63. These two components are calculated in the same way as for 

carbon gains and typically add <3% to plot-level carbon losses. 

Carbon gains include both gains from the growth of surviving stems and new recruits. 

Separating carbon gains from the tree growth of surviving stems and newly recruited stems shows 

that carbon gains from recruitment are small overall, and are significantly lower in Africa than in the 

Amazon, probably owing to the lower stem turnover rates and longer CRT (in Africa, 

0.17 Mg C ha-1 yr-1; CI: 0.16–0.18 versus in the Amazon, 0.27 Mg C ha-1 yr-1; CI: 0.25–0.28, 

P < 0.001; two-way Wilcoxon test), but this is compensated by carbon gains from survivors being 

significantly larger in Africa (2.33 Mg C ha-1 yr-1; CI: 2.27–2.39) than in the Amazon 

(2.13 Mg C ha-1 yr-1; CI: 2.09–2.17, P = 0.014). Therefore, gains overall (sum of gains from 

surviving stems and newly recruited stems) are indistinguishable between the continents (in Africa, 

2.57 Mg C ha-1 yr-1; CI: 2.51–2.67 versus in the Amazon, 2.46 Mg C ha-1 yr-1; CI: 2.41–2.50, 

P = 0.460; two-way Wilcoxon test). 

Long-term gain, loss and net carbon sink trend estimation (1983–2014) 

The estimated mean and uncertainty in carbon gains, carbon losses and the net carbon sink of the 

African plots from 1983 to 2014 (Fig. 1, Extended Data Fig. 7 and Extended Data Fig. 8) were 

calculated following ref. 6 to allow direct comparison with published Amazonian results. First, each 
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census interval value was interpolated for each 0.1-year period within the census interval. Then, for 

each 0.1-year period between 1983 and 2014, we calculated a weighted mean of all plots monitored 

at that time, using the square root of plot area as a weighting factor6. Confidence intervals for each 

0.1-year period were bootstrapped. 

Trends in carbon gains, losses and the net carbon sink over time were assessed using linear 

mixed effects models (lmer function in R, lme4 package72), providing the linear slopes reported in 

Fig. 1. These models regress the midpoint of each census interval against the value of the response 

variable for that census interval. Plot identity was included as a random effect, that is, by assuming 

that the intercept can vary randomly among plots. We did not include slope as a random effect, 

consistent with previously published Amazon analyses6, because models did not converge owing to 

some plots having too few census intervals. Observations were weighted by plot size and census 

interval length. Weightings were derived empirically, by assuming a priori that there is no significant 

relation between the net carbon sink and census interval length or plot size, following ref. 13. The 

following weighting removes all pattern in the residuals: 

Weight =3Ölengthint + 4Öplotsize – 1  (3) 

where lengthint is the length of the census interval, in years. Significance was assessed by 

regressing the residuals of the net carbon sink model against the weights (P = 0.702). 

Differences in long-term slopes between the two continents for carbon gains, carbon losses 

and net carbon sink, reported in the main text, were also assessed using linear mixed effects models, 

as described above, but performed on the combined African and Amazonian datasets and limited to 

their common time window, 1983 to 2011.5. For these three tests on the pooled data we included an 

additional interaction term between census interval date and continent, where a significant 

interaction would indicate that the slopes differ between continents. The statistical significance of 

continental differences in slope were assessed using the F-statistic (ANOVA function in R, car 

package73). Shortening the common time window to the 20 years when the continents are best-

sampled, mid-1991 to mid-2011, gave very similar results, including a divergent continental sink 

(P = 0.04). 

Continental and pan-tropical carbon sink estimates 

The per unit area total net carbon sink (in Mg C ha-1 yr-1) for each time period in Table 1 (each 

decade between 1980 and 2010; and 2010–2015) is the sum of three components. The first 

component is the per unit area aboveground carbon sink from living trees and lianas with DBH ³ 100 

mm. For Africa we use the per unit area net carbon sink values presented in this paper. For 
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Amazonia, we use data in ref. 6. For Southeast Asia, we use inventory data collected using similar 

standardized methods from 49 plots in ref. 15. For each time window, we use all plots for which 

census dates overlap the period, weighted by the square root of plot area, as for the solid lines in Fig. 

1. The second component is the per unit area aboveground carbon sink from living trees and lianas 

with DBH <100 mm. This is calculated as 5.19%, 9.40% and 5.46% of the first component (that is, 

aboveground carbon of large living trees) in Africa, Amazonia and Southeast Asia respectively13,74. 

The third component is the per unit area belowground carbon sink in live biomass, that is, roots. This 

is calculated as 25%, 37% and 17% of the aboveground carbon of living trees with DBH ³100 mm in 

Africa13, Amazonia6 and Southeast Asia75 respectively. 

For each time period in Table 1 we calculated the continental-scale total carbon sink (Pg C yr-1) by 

multiplying the per unit area total net carbon sink described above by the area of intact forest on each 

continent at that time interval (in ha) reported in Extended Data Table 2. Decades are calculated from 

January 1st 1990 to December 31st 1999. For comparability with previous continental-sink results, we 

used continental values of intact forest area for 1990, 2000 and 2010 as published in ref. 1, that is, 

total forest area minus forest regrowth. We used the 1990–2010 data to fit an exponential model for 

each continent and used this model to estimate intact forest area for 1980 and 2015. 

Finally, in the main text we calculated the proportion of anthropogenic CO2 emissions removed by 

Earth’s intact tropical forests, as the total pan-tropical carbon sink from Table 1 divided by the total 

anthropogenic CO2 emissions. Total anthropogenic CO2 emissions are calculated as the sum of 

emissions from fossil fuel and land-use change and are estimated at 7.6 Pg C yr-1 in the 1990s, 

9.0 Pg C yr-1 in the 2000s, and 11.1 Pg C yr-1 in the 2010s (ref. 21, assuming 1.7% growth in fossil 

fuel emissions in 2018 and 2019, and mean 2010–2017 land-use change emissions for 2018 and 

2019). 

Carbon sink from an atmospheric perspective 

To estimate the evolution of the carbon sink from an atmospheric perspective, we assumed that the 

contribution to the atmosphere from carbon gains are experienced immediately, while the 

contribution to the atmosphere from carbon losses must take into account the delay in decomposition 

of dead trees. We did this by calculating total forest carbon loss (Mg C ha-1 yr-1) for each year in the 

period 1950–2015, using the mean 1983–2015 records from Fig. 1 and assuming constant losses 

before 1983 (1.9 Mg C ha-1 yr-1 and 1.5 Mg C ha-1 yr-1 for Africa and Amazonia respectively). 

Then, for each focal year in the period 1950–2015, we calculated how much carbon was released to 

the atmosphere in the subsequent years as follows: yi = x0 × e-0.17(i-1) - x0 × e-0.17i, where x0 is the 
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total forest carbon loss of the focal year; yi is the carbon released to the atmosphere at i years from 

the focal year; and -0.17 yr-1 is a constant decomposition rate calculated for tropical forests in the 

Amazon45. For example, carbon loss was 1.95 Mg C ha-1 in 1990 in African forests (Fig. 1), from 

which 0.31 Mg C ha-1 was released to the atmosphere in 1991; 0.26 Mg C ha-1 in 1992; 

0.22 Mg C ha-1 in 1993; 0.07 Mg C ha-1 in 2000 and 0.01 Mg C ha-1 in 2010. Hence, of the full 

1.95 Mg C ha-1 dead tree biomass from 1990, ~50% was released to the atmosphere after 4 years, 

~85% after 10 years, and ~97% after 20 years. Finally, for each year between 1983 and 2015, the 

total contribution to the atmosphere from carbon losses was calculated as the sum of all carbon 

contributions released at that year, from all total yearly forest carbon loss pools of the previous years. 

We then calculated decadal-scale mean contributions to the atmosphere from carbon losses, reported 

in the main text. 

Predictor variable estimates (1983–2014) 

For each census interval of each plot, we examined potential predictor variables that may explain the 

long-term trends in carbon gains and carbon losses, reported in Table 2 and Extended Data Table 1. 

First, the environmental conditions during the census interval; second, the rate of change of these 

parameters; and third, forest attributes that may affect how different forests respond to the same 

environmental change. The predictor variable estimates for each census need to avoid bias due to 

seasonal variation, for example the intra-annual variability in atmospheric CO2 concentration. We 

therefore applied the following procedure to avoid seasonal variability impacts on long-term trends: 

(1) the length of each focal census interval was rounded to the nearest complete year (for example, a 

1.1-year interval became a 1 year interval); (2) we computed dates that minimized the difference 

between actual fieldwork dates and complete-year census dates, while ensuring that subsequent 

census intervals of a plot do not overlap. The resulting sequence of non-overlapping census intervals 

was used to calculate interval-specific means for each environmental predictor variable to remove 

seasonal effects. The mean difference between the actual fieldwork dates and the complete-year 

census dates is 0.01 decimal years. 

The first group of potential predictor variables, estimated for each census interval of each 

plot, are theory-driven choices: atmospheric CO2 concentration, MAT and drought intensity, which 

we quantified as MCWD14,20,76,77. 

Atmospheric CO2 concentration. CO2 (in ppm) is estimated as the mean of the monthly mean 

values from the Mauna Loa record78 over the census interval. While atmospheric CO2 concentration 
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is highly correlated with time (R2 = 0.98), carbon gains are slightly better correlated with CO2 

(Radj2 = 0.0027) than with time (Radj2 = 0.0025). 

Mean annual temperature. MAT (in °C) was derived from the temporally resolved (1901–2015) 

dataset of monthly mean temperature from the Climatic Research Unit (CRU TS version 4.03; 

~3,025-km2 resolution; released 15 May 2019; https://crudata.uea.ac.uk/cru/data/hrg/)79. We 

downscaled the data to ~1-km2 resolution using the WorldClim dataset51,80, by subtracting the 

difference in mean monthly temperature, and applying this monthly correction to all months81. We 

then calculated MAT for each census interval of each plot using the downscaled monthly CRU 

record. 

Maximum climatological water deficit. MCWD (in mm) was derived from the ~3,025-km2 

resolution Global Precipitation Climatology Centre dataset (GPCC version 6.0) that includes many 

more rain gauges than CRU in tropical Africa82,83. Because GPCC ends in 2013 we combined it with 

satellite-based Tropical Rainfall Measurement Mission data (TRMM 3B43 V7 product, ~757-km2 

resolution)84. The fit for the overlapping time period (1998–2013) was used to correct the systematic 

difference between GPCC and TRMM: GPCC¢ = a + b × GPCC, with GPCC¢ the adjusted GPCC 

record and a and b different parameters for each month of the year and for each continent. 

Precipitation was then downscaled to ~1-km2 resolution using the WorldClim dataset51,80, by 

dividing by the ratio in mean monthly rainfall, and applying this monthly correction to all months81. 

For each census interval we extracted monthly precipitation values and estimated evapotranspiration 

to calculate monthly climatological water deficit (CWD), a commonly used metric of dry season 

intensity for tropical forests14,76,77. Monthly CWD values were calculated for each subsequent series 

of 12 months (complete years)77. Monthly CWD estimation begins with the wettest month of the first 

year in the interval, and is calculated as 100 mm per month evapotranspiration (ET) minus monthly 

precipitation (P). Then, CWDi values for the subsequent 11 months (i) were calculated recursively 

as: CWDi = ET - Pi + CWDi - 1, where negative CWDi values were set to zero77 (no drought 

conditions). This procedure was repeated for each subsequent complete 12 months. We then 

calculated the annual MCWD as the largest monthly CWD value for every complete year within the 

census interval, with the MCWD of a census interval being the mean of the annual MCWD values 

within the census interval. Larger MCWD indicates more severe water deficits. 

We assume evapotranspiration is 100 mm per month on both continents, based on 

measurements from Amazonia76,77, more limited measurements from West Africa summarized in ref. 
85, predictive skill86, and use in past studies on both continents14,87. MCWD therefore represents a 

precipitation-driven dry season deficit, given that evapotranspiration remains constant. An alternative 
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assessment, using a data-driven evapotranspiration product88,89, gave a mean evapotranspiration of 

95 mm and 98 mm per month for the African and Amazonian plot networks respectively. Using 

these values did not affect the results. 

To calculate the environmental change of potential predictor variables, CO2-change (in ppm 

per year), MAT-change (in °C per year) and MCWD-change (in millimetres per year), we selected 

an optimum period over which to calculate the change, derived empirically by assessing the 

correlation of carbon gains (all plots, all censuses) with the change in each environmental variable, 

using linear mixed effects models (lmer function in R, lme4 package72). The annualized change in 

the environmental variable was calculated as the change between the focal interval and a prior 

interval (termed the baseline period) with a lengthening time window ranging from 1 year through to 

80 years before the focal interval (that is, 80 linear mixed effects models per variable). We calculated 

Akaike’s Information Criterion (AIC) for each model and selected the interval length with the lowest 

AIC. Thus, MAT-change = (MATi - MATb)/(datei - dateb), where MATi is the MAT over the focal 

census interval calculated using the procedure described above, MATb is the MAT over a baseline 

period before the focal interval, datei is the mid-date of the focal census interval and dateb is the mid-

date of the baseline period. The lmer results show that the baseline period for MAT-change is 5 years 

and for CO2-change it is 56 years, while MCWD showed no clear trend, so MCWD-change was not 

included in the models (see Extended Data Fig. 3). All three results conform to a priori theoretical 

expectations. For CO2 a maximum response to an integrated 56 years of change is expected because 

forest stands will respond most strongly to CO2 when most individuals have grown under the new 

rapidly changing condition, which should be at its maximum at a time approximately equivalent to 

the CRT of a forest stand30,90 (mean of 62 years in this dataset). For MAT, 5 years is consistent with 

experiments showing temperature acclimation of leaf- and plant-level photosynthetic and respiration 

processes over half-decadal timescales31,91. MCWD has no overall trend suggesting that once a 

drought ends, its impact on tree growth fades rapidly, as seen in other studies14,92. Also in the moist 

tropics wet-season rainfall is expected to recharge soil water, so lagged impacts of droughts are not 

expected. 

We calculated estimates of two forest attributes that may alter responses to environmental 

change as potential predictor variables: wood density and CRT. In intact old-growth forests, mean 

wood density (in g cm-3) is inversely related to resource availability28,93,94, as is seen in our dataset 

(carbon gains and plot-level mean wood density are negatively correlated; Extended Data Fig. 4). 

Wood density is calculated for each census interval in the dataset, as the mean wood density of all 

trees alive at the end of the census interval, to be consistent with the previous Amazon analysis6. 
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Carbon residence time (CRT, in years) is a measure of the time that fixed carbon stays in the system. 

CRT is a potential correlate of the impact of past carbon gains on later carbon losses30. To avoid 

circularity in the models, the equation used to calculate CRT differed depending on the response 

variable. If the response variable is carbon loss, the CRT equation is based on gains: 

CRT = AGC/gains, with AGC for each interval based on AGC at the end of the interval, and the 

gains for each interval calculated as the mean of the gains in the interval and the previous intervals 

(that is, long-term gains). If the response variable is carbon gains, the CRT equation is based on 

losses: CRT = AGC/losses. The equation employed for use in the carbon loss model (based on gains) 

is the standard formula used to calculate CRT and is retained in the minimum adequate model (see 

below and Table 2). The non-standard CRT equation (based on losses) used in the carbon gain model 

is not retained in the minimum adequate model (see below). 

Statistical modelling of the carbon gain, loss and sink trends 

We first constructed two models including those environmental drivers exhibiting long-term change 

that impact theory-driven models of photosynthesis and respiration as predictor variables: CO2, MAT 

and MCWD. One model had carbon gains as the response variable, the other had carbon losses as the 

response variable (both in Mg C ha-1 yr-1). Models were fitted using the lme function in R, with 

maximum likelihood (NLME package95). All census intervals within all plots were used, weighted 

by plot size and census length (using equation (3)). Plot identity was included as a random effect, 

that is, assuming that the intercept can vary randomly among plots. All predictor variables in the 

models were scaled without centring (scale function in R, RASTER package62). Carbon gain values 

were normally distributed but carbon loss values required a power-law transformation (l = 0.361) to 

meet normality criteria. Multi-parameter models are: carbon gains = intcp + a × CO2 + b × MAT + 

c × MCWD (model 1); carbon losses = intcp + a × CO2 + b × MAT + c × MCWD (model 2); where 

intcp is the estimated model intercept, and a, b and c are model parameters giving the slope of 

relationships with environmental predictor variables. For multi-parameter model outputs see 

Extended Data Table 1, for single-parameter relationships, Fig. 2. 

The second pair of models include the same environmental predictors (CO2, MAT, MCWD), 

plus their rate of change (CO2-change, MAT-change, but not MCWD-change, as explained above), 

and forest attributes that may alter how forests respond (wood density, CRT), as described above. 

We also evaluated the possible inclusion of a differential continent effect of each variable in the full 

model. We first constructed models with only a single predictor variable, and allowed different 

slopes in each continent. Next, if removal of the continent-specific slope (using stepAIC function in 

R, MASS package96) decreased model AIC then the continent-specific slope was not included in the 
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full model for that variable. Only MCWD showed a significant differential continent-specific slope 

(P<0.001). This implies that forests on both continents have common responses to CO2, CO2-change, 

MAT, MAT-change, wood density and CRT, but respond differently to differences in MCWD. This 

is probably because wet-adapted species are much rarer in Africa than in Amazonia as a result of 

large differences in past climate variation34. Last, we allowed different intercepts for the two 

continents to potentially account for differing biogeographical or other continent-specific factors. For 

the carbon loss model, we applied the same continent-specific effects for slope as for the carbon gain 

model. Carbon loss values were transformed using a power-law transformation (l = 0.361) to meet 

normality criteria. 

For both carbon gains and losses we parameterized a global model including the significant 

continent-specific effect of MCWD, selecting the most parsimonious simplified model using all-

subsets regression97,98. To do so, we first generated a set of models with all possible combinations 

(subsets) of fixed effect terms in the global model using the dredge function of the MuMIn package 

in R99. We then chose the best-ranked simplified model based on the second-order Akaike 

Information Criterion (known as AICc) hereafter called the ‘minimum adequate carbon gain/loss 

model’, reported in Table 2. The minimum adequate models are: carbon gains = intcp × continent + 

a × CO2-change + b × MAT + c × MAT-change + d × MCWD × continent + e × wood density 

(model 3); carbon losses = intcp + a × CO2-change + b × MAT-change + c × MCWD + d × CRT 

(model 4). Wood density was retained in the carbon gain model, probably because growth is 

primarily affected by resource availability, whereas CRT was retained in the carbon loss model, 

probably because losses are primarily affected by how long fixed carbon is retained in the system. 

Table 2 presents model coefficients of the best-ranked gain model and best-ranked loss model 

selected using all-subsets regression. These best-ranked gain and loss models have weights of 0.310 

and 0.132 respectively, which is almost double the weight of the second-rank models (0.152 and 

0.075 respectively). In Supplementary Table 2 we also used the model.avg function of the MuMIn 

package to calculate a weighted mean of the coefficients of the best-ranked models, together 

representing a cumulative weight-sum of 0.95 (that is, a 95% confidence subset). Supplementary 

Table 2 (model-averaged) and Table 2 (best-ranked) model parameters are very similar. 

Supplementary Tables 3 and 4 report the complete sets of carbon gains and loss models that 

contribute to the model average results. 

The model-average results show the same continental differences in sensitivity to 

environmental variables as the best-ranked models. From 2000 to 2015, carbon gains increased 

owing to CO2-change (+3.7% in both the averaged and the best-ranked models, both continents), 
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whereas temperature rises led to a decline in gains, which especially had an effect in the Amazon 

(-1.14% and -1.07% due to MAT and MAT-change together in the averaged and best-ranked model 

respectively). Finally, both models result in similar predictions of the net carbon sink over the 1983–

2040 period: the future net sink trend in Africa is -0.004 and -0.003 in the best-ranked and averaged 

models, respectively; in Amazonia the future net sink trend is -0.013 and -0.011 in the best-ranked 

and averaged models, respectively. The Amazon sink reaches zero in 2041 using model-averaged 

parameters compared to 2035 using the best-ranked models. 

Estimating future predictor variables to 2040 

To calculate future modelled trends in carbon gains and losses (Fig. 3), we first estimated annual 

records of the predictor variables (CO2-change, MAT, MAT-change, MCWD, wood density and 

CRT) to 2040 (Extended Data Fig. 5). 

To do so, we first calculated annual records for the period of the observed trends for each plot 

location (that is, from 1983–2014 in Africa and 1983–2011.5 in Amazonia). For CO2-change, MAT, 

MAT-change and MCWD we extracted monthly records as described in the Methods section 

‘Predictor variable estimates (1983–2014)’. For wood density and CRT we interpolated to a 0.1-year 

period within each census interval (as in Fig. 1). Then, we calculated the mean annual value of each 

predictor variable from the 244 plot locations in Africa, and separately the mean annual value of 

each predictor variable from the 321 plot locations in Amazonia (that is, solid lines in Extended Data 

Fig. 5). For each predictor variable, we calculated annual records of upper and lower confidence 

intervals by respectively adding and subtracting 2s to the mean of each annual value (shaded area in 

Extended Data Fig. 5). 

Second, for each predictor variable we parameterized a linear model for each continent using 

the annual records for the period of the observed trends. Then for each predictor variable, the 

continent-specific linear regression models were used to estimate predictor variables for each plot 

location from 2014 to 2040 in Africa and from 2011.5 to 2040 in the Amazon (dotted lines in 

Extended Data Fig. 5). For each predictor variable, we calculated annual records of upper and lower 

confidence intervals by respectively adding and subtracting 2s to the slope of each linear model 

(shaded area around dotted lines in Extended Data Fig. 5). 

Estimating future carbon gain, loss and net carbon sink 

We used the minimum adequate models (Table 2) to predict annual records of carbon gain, carbon 

loss and the carbon sink for the plot networks in Africa and Amazonia over the period 1983 through 

to 2040 (Fig. 3). We extracted fitted carbon gain and loss values using the mean annual records for 
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each predictor variable (predictSE.lme function, AICcmodavg package100). Upper and lower 

confidence intervals were calculated accounting for uncertainties in the model (both fixed and 

random effects) and predictor variables using the 2s upper and lower confidence interval for each 

predictor variable (using predictSE.lme). Finally, the net carbon sink was calculated by subtracting 

the losses from the gains. To obtain sink values in the future in Table 1, annual per unit area sink 

predictions (from Fig. 3) were averaged over each decade and multiplied by the future forest area, as 

described above. 

To test the sensitivity of the future predictions in Fig. 3, we reran the analysis by modifying 

future trajectories of predictor variables one at a time, while keeping all others the same, to assess the 

mean C sink over 2010–15 and 2030 (averaging at 2030 is not necessary as trends in MAT-change 

and MCWD, which largely drive modelled inter-annual variability, are estimated as smooth trends in 

the future). For each predictor variable, we explored potential impacts of the likely bounds of 

possibility: (1) by taking the steepest slope of either continent from the extrapolated trends, doubling 

this slope and applying it on both continents; and (2) by taking the steepest slope of either continent 

from the extrapolated trends, taking the opposite of this slope and applying it on both continents. 

These bounds represent deviations of >2s from observed trends. Change in MAT also alters MAT-

change, so we present the sensitivity of both parameters together. 

Additionally, for CO2-change and MAT, we also calculated future slopes under three future 

Representative Concentration Pathway (RCP) scenarios38 with different radiative forcing in 2100: 

RCP2.6, RCP4.5 and RCP8.5. Future RCP CO2-change slopes (ppm yr-1) were calculated using RCP 

CO2 concentration data for the years between 2015 and 2030 inclusive. Future RCP MAT and MAT-

change slopes were obtained from plot-specific MAT values extracted from downscaled 30-s 

resolution data for current80 and future51 climate from WorldClim, and averaged over 19 CMIP5 

models. We subtracted the mean 2040–2060 climate MAT (that is, 2050) from the mean 1970–2000 

climate MAT (that is, 1985), divided by 65 years to give the annual rate of change. We then 

calculated a mean slope over all plots per continent. Finally, to avoid mismatches between RCP-

derived values of CO2 and MAT and the observed records, we removed any difference in intercept 

between the RCP trends and observed trends, so that the RCP trends were a continuation of the end-

point of the observed trajectory in 2015. We did not estimate the sensitivity of MCWD under the 

RCP scenarios, because the CMIP5 model means do not show drought trends for our forest plot 

networks, unlike rain gauge data for the recent past, and thus would show little or no sensitivity to 

MCWD. For each modified slope, Supplementary Table 5 reports the absolute decline in the sink in 

each continent in 2030 compared to the 2010–15 mean sink. This shows that the future sink strength 
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is sensitive to future environmental conditions, but within both RCP scenarios and our bounds of 

possibility we show a decline in the sink strength in both continents over the 2020s. 

Reporting summary 

Further information on research design is available in the Nature Research Reporting Summary 

linked to this paper. 
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Extended Data Fig. 1 Map showing the locations of the 244 plots included in this study. Dark 

green represents all lowland closed-canopy forests, submontane forests and forest-agriculture 

mosaics; light green shows swamp forests and mangroves, blue circles represent plot clusters, 

referred to by three-letter codes (see Supplementary Table 1 for the full list of plots). Clusters <50 

km apart are shown as one point for display only, with the circle size corresponding to sampling 

effort in terms of hectares monitored. Land cover data are from The Land Cover Map for Africa in 

the Year 2000 (GLC2000 database)101,102. This map was created using the R statistical platform, 

version 3.2.1 (ref.62), which is under the GNU Public License. 

Extended Data Fig. 2 Long-term above-ground carbon dynamics of 244 African intact tropical 

forest inventory plots. Points in the scatterplots indicate the mid-census interval date, with 

horizontal bars connecting the start and end date for each census interval for net aboveground 

biomass carbon change (a), carbon gains (from woody production from tree growth and newly 

recruited stems) (b), and carbon losses (from tree mortality) (c). Examples of time series for three 

individual plots are shown in purple, yellow and green. Associated histograms show the distribution 

of the plot-level net aboveground biomass carbon (d) (with a three-parameter Weibull probability 

density distribution fitted in blue, showing that the carbon sink is significantly larger than zero; one-

tailed t-test: P < 0.001), carbon gains (e) and carbon losses (f). 
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Extended Data Fig. 3 AIC from correlations between the carbon gain in tropical forest 

inventory plots and changes in either atmospheric CO2, temperature (as MAT) or drought (as 

MCWD), each calculated over ever-longer prior intervals. Panels show AIC from linear mixed 

effects models of carbon gains from 565 plots and corresponding atmospheric CO2 (CO2-change) (a), 

MAT-change) (b), and MCWD-change) (c). For CO2 the AIC minimum was observed when 

predicting the carbon gain from the change in CO2 calculated over a 56-year-long prior interval 

length. We use this length of time to calculate our CO2-change parameter. Such a value is expected 

because forest stands will respond most strongly to CO2 when most individuals have grown under 

the new rapidly changing condition, which should be at its maximum at a time approximately 

equivalent to the CRT of a forest stand30,90 (mean of 62 years in this pooled African and Amazonian 

dataset). For MAT the AIC minimum was 5 years, which we use as the prior interval to calculate our 

MAT-change parameter. This length is consistent with experiments showing temperature acclimation 

of leaf- and plant-level photosynthetic and respiration processes over approximately half-decadal 

timescales31,91. For MCWD the AIC minimum is not obvious, while the slope of the correlation, 

shown in panel d, shows no overall trend and oscillates between positive or negative values, meaning 

there is no relationship between carbon gains and the change in MCWD over intervals longer than 1 

year; therefore MCWD-change is not included in our models. This result suggests that once a 

drought ends, its impact on tree growth fades rapidly, as seen in other studies14,92. Also in the moist 

tropics wet-season rainfall is expected to recharge soil water, and hence lagged impacts of droughts 

are not expected. 

Extended Data Fig. 4 Potential forest dynamics-related drivers of carbon gains and losses in 

structurally intact African and Amazonian tropical forest inventory plots. The aboveground 

carbon gains, from woody production (a, b), and aboveground carbon losses, from tree mortality (c, 

d), are plotted against the CRT, and wood density for African (blue) and Amazonian (brown) 

inventory plots. Linear mixed effect models were performed with census intervals (n = 1,566) nested 

within plots (n = 565) to avoid pseudo-replication, using an empirically derived weighting based on 

interval length and plot area (see Methods). Significant regression lines for the complete dataset are 

shown as a solid line; non-significant regressions are shown as a dashed line. Each dot represents a 

time-weighted mean plot-level value; the shading of the dot represents total monitoring length, with 

empty circles corresponding to plots monitored for £5 years and solid circles for plots monitored for 

>20 years. Carbon loss data are presented untransformed for comparison with carbon gains; linear 

mixed effects models on transformed data to fit normality assumptions do not change the 
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significance of the results. We note that CRT is calculated differently for the carbon gains and losses 

models (see Methods).  

Extended Data Fig. 5 Trends in predictor variables used to estimate long-term trends in above-

ground carbon gains, carbon losses and the resulting net carbon sink in African and 

Amazonian intact tropical forest plot networks. Mean annual CO2-change (a), MAT (b), MAT-

change (c), MCWD (d), CRT (e) and wood density (f) for African plot locations in blue, and 

corresponding Amazon plots locations in brown (g–l). Solid lines for CO2-change, MAT, MAT-

change and MCWD represent observational data, and solid lines for CRT and wood density represent 

plot means and a time window where >75% of the plots were monitored; long-dashed lines are plot 

means where <75% of plots were monitored. Dotted lines are future values estimated from linear 

trends from the 1983–2014 (Africa) or 1983–2011 (Amazon) data (slope and P value reported in 

each panel), see Methods for details. Upper and lower confidence intervals (shaded area) for the past 

(Africa 1983–2014; Amazonia 1983–2011) are calculated by respectively adding and subtracting 2s 

to the mean of each annual value. Upper and lower confidence intervals for the future were estimated 

by adding and subtracting 2s from the slope of the regression model. 

Extended Data Fig. 6 The change in carbon losses versus CRT of inventory plots in Africa and 

Amazonia. For plots with two census intervals, we calculated the change in carbon losses (‘∆losses’) 

as the carbon losses (in Mg C ha-1 yr-1) of the second interval minus the carbon losses of the first 

interval, divided by the difference in mid-interval dates. For plots with more than two intervals, we 

calculated the change in carbon losses for each pair of subsequent intervals, then calculated the plot-

level mean over all pairs, weighted by the time length between mid-interval dates. This analysis 

includes only plots with at least two census intervals that were monitored for ³20 years (that is, 

roughly one-third of the mean CRT of the pooled African and Amazon dataset; n = 116). Breakpoint 

regression was used to assess the CRT length below which forest carbon losses begin to increase. 

Plots with CRT <77 years show a recent long-term increase in carbon losses; longer CRT plots do 

not. Blue points are African plots, brown points are Amazonian plots. 

Extended Data Fig. 7 Trends in African tropical forest net aboveground live biomass carbon, 

carbon gains and carbon losses. Trends are calculated for the last 15 years of the twentieth century 

(left panels, a–c) and the first 15 years of the twenty-first century (right panels, d–f). Plots were 

selected from the full dataset if their census intervals cover at least 50% of the respective time 

windows, that is, they are intensely monitored (n = 56 plots for 1985–2000, and n = 134 plots for 

2000–2015, respectively). Solid lines show mean values, and shading corresponds to the 95% CI, as 
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calculated in Fig. 1. Dashed lines, slopes and P values are from linear mixed effects models, as in 

Fig. 1. The data shows a difference compared to Fig. 1, notably the sink decline after about 2010 

driven by rising carbon losses. This is because in Fig. 1 we include all available plots over the 1983–

2015 window, which includes clusters of plots monitored only in the 2010s that had low carbon loss 

and high carbon sink values. 

Extended Data Fig. 8 Twenty-first-century trends in aboveground biomass carbon losses from 

African tropical forest inventory plots with either long (left panels) or short (right panels) 

CRT. Upper panels include all plots, that is, as in Fig. 1, but split into a long-CRT group (a), and a 

short-CRT group (b), each containing half of the 244 plots. Lower panels restrict plots to those 

spanning >50% of the time window, that is, intensely monitored plots, as in Extended Data Fig. 7, 

but split into a long-CRT group (c), and a short-CRT group (d), each containing half of the 134 plots. 

Solid lines indicate mean values, shading the 95% CI, as for Fig. 1. Dashed lines, slopes and P 

values are from linear mixed-effects models, as for Fig. 1. Carbon losses increase at a higher rate in 

the short-CRT than the long-CRT group of plots, in both datasets, although this increase is not 

statistically significant. 

Extended Data Table 1 
Models to predict carbon gains and losses in African and Amazonian tropical forests, including only 
environmental variables, showing long-term trends that affect theory-driven models of photosynthesis and 
respiration. Carbon loss values were normalized via power-law transformation, l = 0.361. 

Extended Data Table 2 
Forest area estimates used to calculate total continental forest sink. Intact forest area for 1990, 2000 and 
2007 is published in ref.1 (that is, the total forest area minus forest regrowth). To estimate intact forest area for 
the other years in this table, we fitted exponential models for each continent using the published data1. 


